

Outline

- Overview key elements of a muon collider
- Magnet-related issues along the collider path
- Some magnet design paradigms to consider
 - o Development & demonstration
 - o Magnets for intermediate facilities & for final collider
- A review of key magnet-related challenges

Overview of a Muon Collider

 Magnets are central to target & front end, cooling, acceleration, collider ring

Boscolo, Delahaye, Palmer https://doi.org/10.1142/9789811209604_0010

Key issues: Target/front end

- High field target solenoid
- Tapered field capture solenoid
- Challenges:
 - o ~20T solenoid field
 - High radiation environment
 - O Likely inaccessible for hands-on maintenance
 - o Large stored energy
 - o Stray fields
- Mitigations:
 - o Optimize bore vs radiation load
 - e.g. Tungsten shielding?
 - o CICC technology may be appropriate
 - o Active shielding (if necessary)
 - o Synergies with
 - NHMFL high field solenoids
 - FES central solenoid developments
 - But leverage DC nature of field

McDonald et al., IPAC2014

Neuffer et al., https://arxiv.org/pdf/1711.11120.pdf

Zisman, TAS VOL. 18, NO. 2, JUNE 2008

Technology options

Mu2e detector solenoid (2T, 2m ID)

Lombardo et al., TAS 2016

NHMFL
Series
connected
hybrid
Outsert:
(~13T,
610mm ID)

Bird et al., TAS 2009

Dixon et al., TAS 2017

Key issues: Cooling

- Multiple cooling sections needed to reduce the beam phase space
 - Longitudinal =>large momentum-acceptance acceleration and storage
 - o Transverse=>need rapid 4D (some 6D) cooling=>solenoids
 - For collider, need small energy spread=> final cooling
- Ionization cooling:
 - o Requires strong solenoidal fields for focusing
 - Large bore to accommodate (room temp) absorbers and RF
- Challenges:
 - o Requires HTS for fields >~20T
 - =>32T solenoid demonstration at NHMFL shows potential, but probably need to develop and demonstrate with HTS cable technology
 - o Helical channel has significant structural complexities

Yonehara et al., PAC09

Key issues: Acceleration

- Classic approach:
 - o synchrotron-based ramp magnets in concert with RF acceleration
 - o Challenges:
 - dB/dt induces...
 - heat in conductor (AC losses); =>impacts performance $J \leq J_c(B,T)$
 - Magnetization in superconductor (=>field errors)
 - Eddy currents in associated conductive materials (=>field errors)
 - Fatigue considerations drive many design considerations
 - Cycle time drives collider performance
 - o Mitigation approaches:
 - Laminations in all conducting materials (where possible)
 - Small filaments in superconductor
 - Reduce contact resistance between strands
 - o Elements of the acceleration may use different paradigms, e.g.
 - Recirculating Linacs
 - FFAG or similar the holy grail is to...
 - Eliminate ramping
 - Maximize muon momentum acceptance
 - Store beams of varying energies simultaneously

Volpini et al., TAS 2011

TABLE I WIRE MAIN CHARACTERISTICS

Diameter after coating	0.825 ± 0.003		mm
Filament twist pitch	5 +0.5 -0		mm
Effective Filament Diameter	1st generation 2nd generation	≤ 3.5 ≤ 2.5	μm μm
Interfilament matrix material Filament twist direction	Cu-0.5 wt% Mn right handed (clockwise)		
Ic @ 5 T, 4.22 K	> 541		A
n-index @ 5 T, 4.22 K	> 30		
Stabilization matrix	Pure Cu 0.4 + 0.09 B [T] >1.5 ± 0.1		
ρ _t at 4.22 K			nΩ·m
Cu+Cu-Mn : Nb-Ti ratio (α)			
Surface coating material	Staybrite (Sn-5 wt% Ag)		

Willering et al., TAS 2008

Non-ramping options are intriguing

- Fixed field configurations can they work?
- Non-scaling FFAGo "built for Muons"

CBETA - Trbojevic et al., IPAC2017

EMMA - Machida et al., Nature Physics, 2012

Qiang, Brouwer, Teyber, PRAB 2021

Key issues: Collider ring magnets

- Dipoles, quadrupoles for main ring
- Interaction region magnets
- Significant work has been done on ~1.5TeV muon collider ring concepts
- Major considerations:
 - o Compact ring enables increased collision rates and hence physics
 - =>Compact implies higher field dipole
 - o Apertures of 5-sigma are considered acceptable
 - o Significantly heat loads (SR, *Muon decay*, Muon losses)

Collider dipole magnets

- Dipoles must address significant heat load as well as radiation load
 - Open midplane or shielding (e.g. Tungsten)
 - o Example: 2TeV (4TeV c-m) study suggested 2kW/m deposition
 - ⇒ Must extract most heat at higher temperature in order to be feasible
- Challenge for high field magnets
 - O Aperture is "costly" at high field

Note: ongoing work in the DOE-OHEP's US Magnet Development Program is highly relevant

Novitski et al., TAS 2011

Muon collider feasibility study 1997, LBNL-38946

b) Cold Iron H Dipole Magnet

Interaction region magnets

- IR quads operating at ~11-12T
 - O Large bore (~150mm)
 - o Parameters are similar to HL-LHC quads.

Similar, but HL-LHC quads allow for a Tungsten shield!

- IR Dipoles
 - o Need to tolerate high radiation
 - =>Large bore, or open midplane

Alexahin et al., PTSTAB 14,2011

Main research areas

Ideas for a magnet technology roadmap

- Core elements:
 - o High-field solenoid development
 - o Large bore dipole technologies
 - o Fast-ramping dipoles optimized in pulse duration, frequency, field
 - o Understanding radiation environment and appropriate materials
- High-risk / high-reward element:
 - o Non-ramping magnet/optics solutions for acceleration

Backup

Magnets start with the superconductor

• We are about to put Nb₃Sn into a collider for the first time, and are investigating the potential of HTS

In the US, a collaboration is focused on magnet technology for future colliders

The Updated Roadmap for MDP is publicly available https://arxiv.org/abs/2011.09539

LBNL, FNAL, BNL, ASC/NHMFL

- Major themes of the updated Roadmaps:
 - O Explore the potential for stress-managed structures to enable high-field accelerator magnets, i.e. structures that mitigate degradation to strain-sensitive Nb₃Sn and HTS superconductors in high-field environments;
 - O *Explore the potential for hybrid HTS/LTS magnets* for cost-effective high field accelerator magnets that exceed the field strengths achievable with LTS materials;
 - O Advance magnet science through the rapid development and deployment of unique diagnostics and modeling tools to inform and accelerate magnet design improvements;
 - O *Perform design studies* on high field accelerator magnet concepts to inform DOE-OHEP on further promising avenues for magnet development;
 - O *Advance superconductors* through enhanced performance, improved production quality, and reduction in cost all critical elements for future collider applications.

